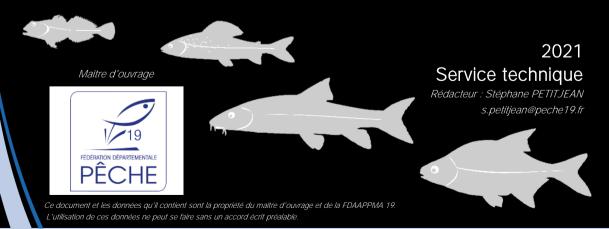


Agréée au titre de la protection de la nature - Loi du 10 juillet 1976


Inventaire piscicole sur la Vienne près des sources à Peyrelevade le 27 août 2021

AAPPMA gestionnaire

Peyrelevade

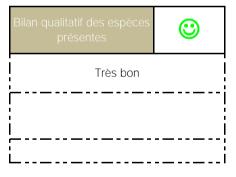
Commune Peyrelevade

Fiche synthétique des résultats de la pêche électrique

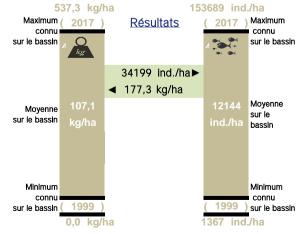
AAPPMA: Peyrelevade **DATE:** 27/08/2021

COURS D'EAU: Vienne LIEU: Sources

1 - CARACTÉRISTIQUES ET POTENTIALITÉS DU COURS D'EAU



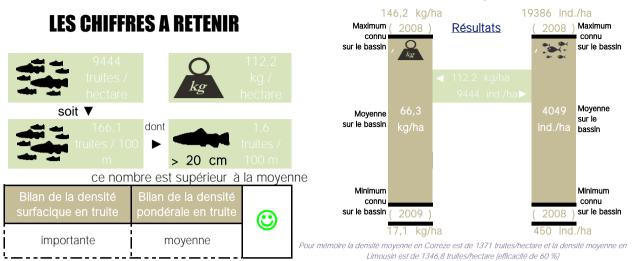
2 - ÉTAT ÉCOLOGIQUE DU COURS D'EAU


Vairon

LES CHIFFRES A RETENIR

Ces données sont issues des bases de données disponibles à la Fédération au 01/01/2019

Etat global évalué du peuplement piscicole sur ce cours d'eau



L'état écologique de la Vienne près des sources est excellent.

Fiche synthétique des résultats de la pêche électrique

3 - DIAGNOSTIC DE LA POPULATION DE TRUITE

Ces données sont issues des bases de données disponibles à la Fédération au 01/01/2019

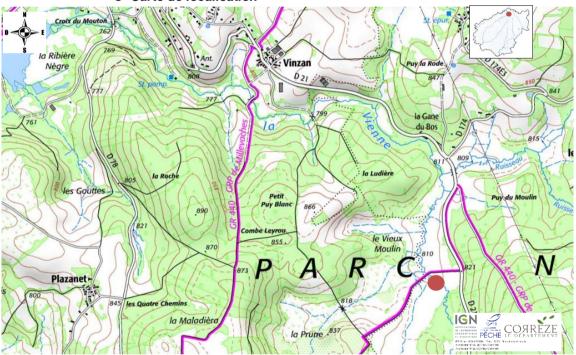
Etat global de la population de truites sur ce cours d'eau

L'état de la population de truite est excellent (situation conforme).

Actions sur le milieu Amélioration de la Gestion piscicole Connaissance

Informations générales sur la station

Généralités


	Cours d'eau			
	Vienne			
	Département 1			
	19			
	Commune 1			
	Peyrelevade			
Lieu-	dit et limites amont et aval			
Lieu-dit :	Sources			
Amont :	Radier			
Aval :	Radier amont buse			
AA	AAPPMA(s) gestionnaire(s)			
	Peyrelevade			
Code station sandre				
	Catégorie piscicole			
E	au libre 1ère catégorie			

	Affluent de			
	Loire			
Département 2				
Commune 2				
Coo	rdonnées (en Lambert 93)			
X amont :				
Y amont :				

X aval :	628156
Y aval :	6509953

Code opération FD19
VIE1_2021_8
Contexte PDPG
Vienne 1

⊙ Carte de localisation

⊙ Contexte de la station

CONDITIONS MÉSOLOGIQUES

Altitude	809	mètres	Climat	Océanique	Géologie	Granitique
Distance à la	source	3,45 km	Superficie du	bassin 5,26 km ²	Linéaire am	nont km
Rang de Str	ahler	3	T°moy janv	-0,43	T°moy juillet	16,96

Température de l'air selon référentiel thermique IPR-2006

PERTURBATIONS SUR LA STATION, À PROXIMITÉ OU SUR LE BASSIN

Occupation du sol du bassin versant Activités industrielles Tronçon court-circuité / débit réservé Zones humides Non Non Présence d'étangs Présence de résineux Présence d'éclusées Oui (amont sur le Non Non bassin) Activités agricoles Recalibrage Elevage extensif Non Autres

PHOTOGRAPHIE AÉRIENNE DE L'ENVIRONNEMENT IMMEDIAT DE LA STATION

⊙ Gestion piscicole sur la station

GÉNÉRALITÉS

Détenteur du droit de pêche	Propriétaire privé / AAPPMA		
Cours d'eau concerné par une DIG	Non	Parcours graciation	Non
Fréquentation du secteur par les pêcheurs	Faible	Réserve	Non

RÉGLEMENTATION

Taille légale de capture	20 cm
Quota journalier autorisé	6

REPEUPLEMENT

Espèce repère (PDPG)	Truite
Gestion pratiquée	Patrimoniale

Dernier repeuplement connu	Date	Quantité	Stade
- T			

O Données écologiques et qualité d'eau de la station

STATION

SANDRE	

HYDROLOGIE

Débit constaté	Bas
Conditions hydrologiques	Etiage
Tendance	Stable

Moyenne des temp. Max. des 30 jours consécutifs les plus chauds de l'eau du	°C
Dureté calco magnésienne de l'eau	mg.l

PHYSICO-CHIMIE

рН	
Temp' de l'eau	14,5 °C
Temp' de l'air	17 °C
Conductivité	56 μS/cm²
Oxygène dissous	mg.l
% saturation en	%
Turbidité (évaluation	Nulle

Observations

DONNÉES HISTORIQUES

Peuplement piscicole
(Pêches électriques anciennes)

Inventaire le 21/09/2018

Inventaire le 14/09/2016
Inventaire le 17/09/2008

Macroinvertébrés
(IBGN, indices biotiques etc.)

Aucune donnée historique

<u>Oualité d'eau</u> Prélèvements, analyses Aucune donnée historique

Informations générales sur la pêche électrique

O Caractéristiques de la pêche électrique

GÉNÉRALITÉS

Date	27/08/2021							
Heure début	13	Н	45	Heure fin	16	Н	0	
Durée tot	ale de l'c	péra	tion	135 minutes				
Cadre de la	Evaluation de l'état o				dans le	cadre	de l'étude de	
	l'impact écologique de la suppression du plan d'eau d						d'eau de	
pêche				Peyreleva	de			

MATÉRIEL

Matérie	el utilisé	Héron		
Tension	629 volts	Puissance utilisée 0,88 kVA		
Nb anodes	1	Nb épuisettes	2	

MÉTHODE

Protocole	Inventaire		
Type de prospection	Complète à pied		
Largeur moyenne	1,83 mètres		
Longueur prospectée	62,00 mètres		
Surface prospectée	109,07 m ²		

DÉROULEMENT

Titulaire de l'arrêté préfectoral

Nombre de	e passages 2	Isolement du secteur		Non
Temps de	Passage 1	Passage 2	<u>P</u> .	assage 3
pêche horaire	32 minutes	22 minutes	0	minutes
Temps de	Passage 1	Passage 2	<u>P</u> .	assage 3
pêche groupe	28,18 minutes	16,24 minutes	NR	minutes
Doctination	Remis sur site :	Ensemble d	es pois	sons
Destination des poissons				
ues poissons	□ Détruits :			

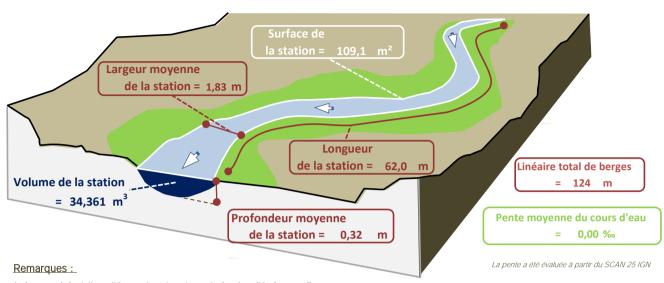
MAÎTRE D'OUVRAGE

MAÎTRE D'ŒUVRE

OBSERVATIONS

L'opération s'est déroulée normalement, selon les règles de l'art. Aucun problème matériel ni aucune mortalité consécutive à l'opération n'ont été observés.

Responsable de la sécurité


o Moyens humains de la pêche électrique

	M. Patrick CHABRILLANGES		M. Stéphane PETITJEAN		M. Sullivan MIRAT	
	Nombre de bénévoles présents	3	Propriétaires présents	Non	Nombre de professionnels présents	1
			Epuisettes			
		M.	Arthur MIRAT		Anada	
	←	_			Anode	
Seaux M.	Sullivan MIRAT	M.	Gaylord MANIÈRE		M. Julien CHIRICO	
				=		
1						
					(a) (a)	
	1		Biométrie		** **	kg
	Transferts AAPPMA		M. Stépha	ne PETITJ	EAN M. Stéphane MAS Mme Pascaline SEGUY	

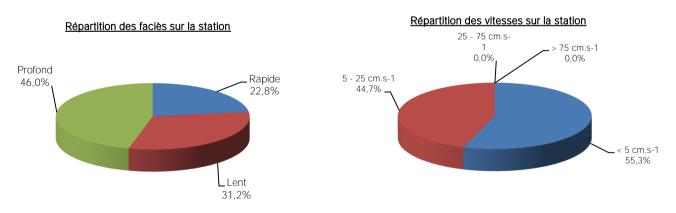
Responsable de l'opération

Description de l'habitat sur la station

O Description synthétique de l'habitat sur la station

La longueur de la station a été mesurée en tenant compte des sinuosités du cours d'eau

La largeur de la station correspond à la somme pondérée des largeurs moyennes calculées pour chaque faciès


Le volume de la station correspond à la somme des profondeurs moyennes de chaque faclès (longueur du faclès * moyenne des largeurs du faclès * moyenne des profondeurs du faclès)

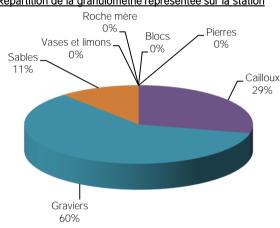
La longueur de la station pêchée est représentative des faciès de ce ruisseau puisqu'elle correspond à environ 34 fois fois la largeur du lit mineur. On obtient ainsi une alternance de séquences échantillonnées qui permet d'obtenir une bonne évaluation du peuplement piscicole en présence.

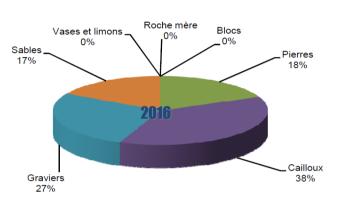
Faciès, vitesse de courant

	Rapide	Lent	Profond
Nombre de faciès	3	5	4
Surface moyenne du lit mouillé	24,8 m²	34,065 m ²	50,2 m ²
Moyenne des profondeurs	0,21 m	0,28 m	0,37 m
Répartition surfacique de la station	22,8%	31,2%	46,0%

	< 5 cm.s ⁻¹	5 - 25 cm.s ⁻¹	25 - 75 cm.s ⁻¹	> 75 cm.s ⁻¹
Nombre de faciès	6	6	0	0
Surface (en m²)	60,27	48,80	0,00	0,00

Le pourcentage de profond est bon. Ce tronçon offre un bon habitat aux adultes de truite commune. On trouve une bonne répartition de tous les faciès et les classes de vitesse sur cette station. Ce cours d'eau est donc morphologiquement très diversifié.


Substrat du fond du cours d'eau


	Dominant	Accessoire
Rm	0	0
Roche mère	Faciès	Faciès
250-1000 mm	0	0
Blocs	Faciès	Faciès
60-250 mm	0	0
Pierres	Faciès	Faciès
16 - 60 mm	4	0
Cailloux	Faciès	<u>Faciès</u>

	Dominant	Accessoire
2 - 16 mm	8	7
Graviers	Faciès	Faciès
0,05 - 2 mm	0	5
Sables	Faciès	Faciès
< 0,05 mm	0	0
Vases et limons	Faciès	Faciès

Tiré et adapté de l'échelle granulométrique de Wentworth (MALAVOI, 1989)

Répartition de la granulométrie représentée sur la station

La présence de pierres, cailloux et blocs entraîne un nombre élevé de faciès favorables pour toutes les classes d'âge pour la truite commune. La granulométrie est très diversifiée avec quasiment toutes les fractions représentées ce qui est favorable pour le développement harmonieux du peuplement piscicole.

0,00 / 10 | • 0,14/10 en 2016

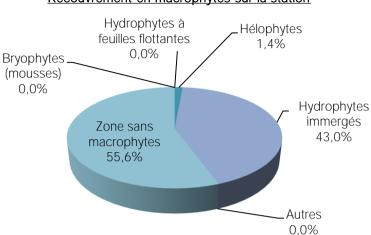
L'intensité moyenne du colmatage sur la station est nulle car le sable et/ou les particules fines recouvrent 0 % de la surface du fond du cours d'eau.

Ce colmatage est composé à 0% de fractions minérales et 0% de fractions organiques (vase, boue).

Frayères potentielles à truite commune

On entend par frayères potentielles, des zones favorables à la reproduction de la truite commune, c'est-à-dire qui présentent toutes les caractéristiques pour une bonne utilisation par les géniteurs lors de la fraie : bonne granulométrie, profondeurs et vitesses adéquates.

Sur ce tronçon de ruisseau échantillonné, nous avons observé environ 12 frayères potentielles qui représentent une surface totale d'environ 7,6 m² ce qui correspond à 7,0% de la surface de la station.


Le nombre de frayères potentielles est donc important et on peut s'attendre à trouver la présence d'un bon recrutement en alevins de l'année pour la truite commune. Notons que des frayères actives ont déjà été observées sur ce ruisseau.

O Végétation aquatique (macrophytes) et ombrage

Note moyenne du recouvrement en macrophytes

4,4 / 10

Recouvrement en macrophytes sur la station

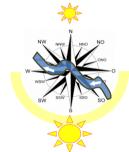
% moyen de recouvrement sur la station

Bryophytes (mousses)

Hydrophytes à feuilles flottantes

Hélophytes
immergés

Autres


0,0%

43,0%

Le taux de recouvrement (surface) en macrophytes (végétation aquatique) est moyen avec une note de 4,4 / 10. Ceci laisse penser que les invertébrés se concentrent dans la granulométrie et dans les nombreuses racines présentes.

Ombrage moyen observé sur la station 0,00 / 10

L'ombrage du ruisseau (surface) par la ripisylve (végétation sur les berges) est nul avec une note de 0,00 / 10. L'exposition de la station à l'ensoleillement est plutôt bon (orientation Est-Ouest). La faible minéralisation de ce cours d'eau et le peu d'éclairement observé impliquent sans doute un manque de production du ruisseau en plancton, base de la chaîne alimentaire.

Abris et caches

Berges sous cavées	Présentes	Blocs *	Présents
Bois mort	Absent	Racines	Absentes
Encombres	Présents	Autres	Présents

^{*} On regroupe sous cette appellation toute la granulométrie (blocs, pierre, concretions calcaires etc.) qui peut servir d'abri pour le peuplement piscicole

Note moyenne de la diversité de l'habitat piscicole sur la station

9,6 / 10

4 8,7/10 en 2016

Ce tronçon présente des berges peu artificialisées, seulement, 0,0% du linéaire total de berges sur la station est artificiel (pont, béton ou enrochement). Une ripisylve naturelle et harmonieuse peut donc se développer.


La diversité de l'habitat piscicole est excellente avec une note de 9,6 / 10.

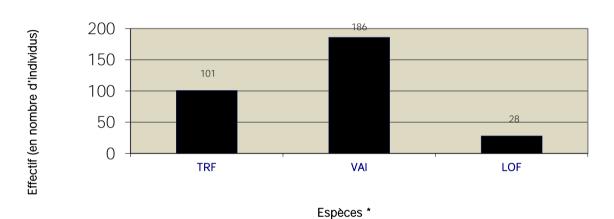
Ce tronçon offre de nombreux habitats, principalement des profonds, des radiers ou des courants qui sont particulièrement attractifs pour les individus de truite commune. La majeure partie des abris pour les juvéniles est constituée de pierres ainsi que de petits blocs. Les adultes peuvent s'abriter dans les nombreuses sous-berges.

Synthèse de l'habitat piscicole sur la station

En synthèse, ce tronçon de cours d'eau échantillonné est représentatif de l'habitat que l'on peut trouver sur ce cours d'eau et cet habitat semble très diversifié et offrant toutes les qualités requises pour le développement harmonieux du peuplement piscicole notamment pour la truite commune. Cet habitat est particulièrement stable depuis 2008.

Photographies représentatives la station

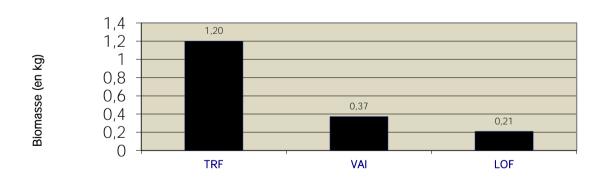
Résultats bruts


O Nombre de poissons capturés, biomasse et richesse spécifique

Durant cette opération de pêche électrique, 1,8 kilogrammes. Nous avons recensé D'autre part, nous avons également capturé Nous avons recensé 0 espèce d'écrevisses.

- poissons ont été capturés pour un poids total de
- 3 espèces de poissons.
- 0 écrevisse qui représente un poids total de 0,0 kilogrammes.

Densités numériques brutes


Répartition par espèce des effectifs capturés

Densités pondérales brutes

Répartition par espèce des biomasses capturées

Espèces *

^{*} pour la signification des codes trois lettres, se référer à l'annexe III.

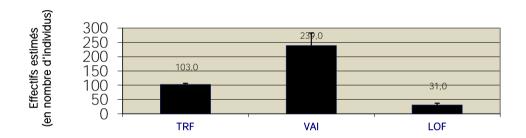
Photographies de la pêche et des espèces rencontrées

Résultats estimés

O Efficacité de la pêche électrique et validité des données

La réalisation de plusieurs passages permet d'obtenir une estimation du nombre de poissons réellement présents sur la station

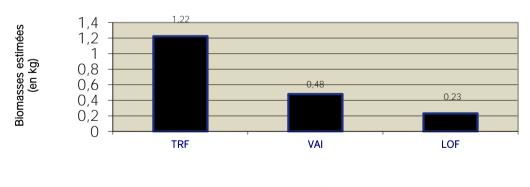
Le peuplement piscicole a été estimé par la **méthode de Carl et Strub**, modèle basé sur le maximum de vraisemblance pondérée. Les hypothèses de calculs ne nécessitent pas une probabilité de capture constante d'une pêche à l'autre. Par contre, elles supposent :

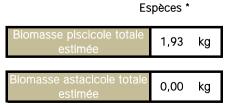

- la stabilité quantitative de la population pendant l'échantillonnage,
- une probabilité de capture identique pour tous les individus en place.

L'efficacité de la pêche électrique réalisée est excellente. Les données estimées obtenues sont donc validées et ne souffrent d'aucune contestation possible.

O Densités numériques estimées

Répartition par espèce des effectifs estimés par la méthode de Carle et Strub et intervalle de confiance




Espèces *

Densités pondérales estimées

Répartition par espèce des biomasses estimées par la méthode de Carle et Strub

^{*} pour la signification des codes trois lettres, se référer à l'annexe III.

Résultats synthétiques

Le tableau ci-dessous présente les résultats estimés pour chaque espèce.

	D	onnées nu	umériques	et pondé	rales esti	mées d	u peuplemen	t piscicole		
Espèce	Passage 1	Passage 2	Passage 3	Effectif capturé	Effectif estimé	Efficacité	ind./100m² de cours d'eau	ind./ 100 m de berge	Biomasse capturée (kg/ha)	Biomasse estimée (kg/ha)
Truite commune	87	14		101	103,0	0,85 😊	94,44	166,1	110,0	112,2
Vairon	125	61		186	239,0	0,53 😐	219,13	385,5	34,2	43,9
Loche franche	20	8		28	31,0	0,67 😊	28,42	50,0	19,2	21,2
Total poissons	232	83	0	315	373	0,65 🕲	342	602	163	177

	Do	nnées nui	mériques	et pondé	rales esti	mées d	u peuplemen	t astacicol	е	
Espèce	Passage 1	Passage 2	Passage 3	Effectif capturé	Effectif estimé	Efficacité	ind./100m² de cours d'eau	ind./ 100 m de berge	Biomasse capturée (kg/ha)	Biomasse estimée (kg/ha)
Total écrevisses	0	0	0	0	0		0	0	0	0

Diagnostic des espèces présentes ZONE À TRUITE Composition du peuplement piscicole [B1 à B4] CHA **ZONE À OMBRE** ZONE À BARBEAU ZONE À BRÊME [B4 à B5] [B5 à B7] [B7 à B9] PCH VAI VAN **PSR** PES LPP GOX CHE VAR BAF **ABH EPI EPT** IDE CTI TAC SDF **OBR** LOT HOT **GAR** PER BRO TOX ABL GRE SIL BLN TAN Ruisseau de BBG SAN BOU **BRB BBE** Source: FDAAPPMA 63 modifié par FDAAPPMA 19 **ZONE À TRUITE ZONE À OMBRE** ZONE À BARBEAU ZONE À BRÊME

Le positionnement des espèces dans chaque zone est fonction de leur optimum vital. Cependant on peut tout de même les trouver dans une autre zone plus en aval. Exemple : on peut trouver de la truite jusque dans la zone à barbeau (grandes rivières) même si elle vit principalement dans la zone à truite (ruisseau). Se référer à la liste des codes trois lettres en annexe.

O Poissons migrateurs et écrevisses

Synthèse sur les espèces présentes

Les espèces contactées lors de cette pêche électrique sont conformes à ce à quoi l'on pouvait s'attendre. En effet, cette station était naturellement dénuée de migrateurs amphihalins (du fait de la présence de cascades infranchissables à Servières et la typologie du ruisseau est trop apicale pour voir la présence d'autres espèces. Le chabot est quant à lui naturellement absent de ce cours d'eau, donc son absence n'est pas synonyme d'une perturbation quelconque. L'écrevisse pieds blancs n'a jamais colonisé le bassin versant de la Vienne amont.

La composition spécifique du peuplement piscicole de la Vienne près des sources est conforme. Ce cours d'eau est en bon état au niveau des espèces présentes.

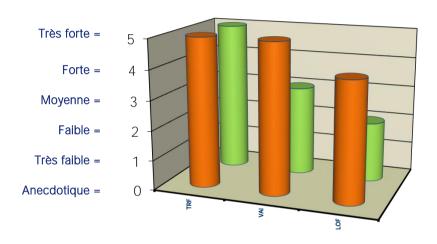
Niveau typologique

O Détermination du niveau typologique originel

Niveau typologique originel

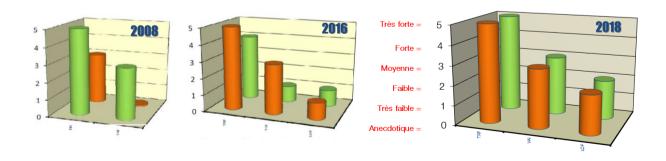
B3 Il correspond au peuplement piscicole de référence hors perturbations, reconstitué sur la base des données historiques (pêches électriques anciennes, archives etc.) et

sur le travail d'atlas piscicole du Limousin réalisé en 2018.


O Détermination du niveau typologique observé

Pas de NTT Ichtyologique (NTI)

Ne disposant pas de données théoriques et physico-chimiques (dureté, température), aucun NTT n'a pu être calculé sur le secteur étudié.


Confrontation théorique/observé

Classes d'abondance théoriques et observées des différentes espèces piscicoles

Le niveau typologique est probablement un B3. Cependant, sans données thermiques ni de données de qualité d'eau, notamment la dureté, il est impossible de calculer un Niveau Typologique Théorique, rendant un diagnostic plus précis et surtout plus fiable notamment quant à la présence des autres espèces.

La comparaison entre les classes d'abondances observées et les classes d'abondances théoriques nous permet de tirer des conclusions claires : ce cours d'eau est plutôt en très bon état puisque les abondances observées sont conformes à celles que nous pouvions attendre sur ce type de ruisseau. Il faut donc se féliciter de voir encore la présence de cours d'eau dont le peuplement piscicole est conforme sur notre département. Ce constat est identique à 2008, 2016 et 2018 où les abondances étaient aussi très fortes.

Diagnostic de la population de truite commune

Statut de protection et liste rouge

La truite commune ne bénéficie d'aucun statut de protection réglementaire.

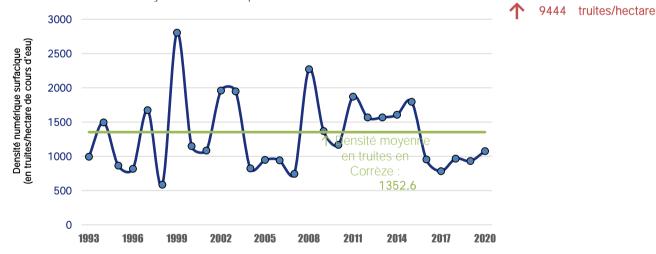
Espèce (évaluée dans les li	stes rouges des p	olssons d'eau douce d	e l'UICN
Monde	Europe	France	Nouvelle-Aquitaine	Limousin
LC	LC	LC	-	NT

LC : Préoccupation mineure (espèce pour laquelle le risque de disparition de métropole est faible) NT : espèce quasi-menacée

Densités numériques et pondérales

La densité estimée de truite commune sur ce cours d'eau est de 9443,8 ind. /hectare.

On considère cette densité de truite comme importante (voir tableau ci-dessous). La densité pondérale


estimée est d'environ 112,2 kg/ha de cours d'eau. Celle-ci peut être considérée comme moyenne

La truite réprésente donc 28 % du nombre total de poissons de ce ruisseau ainsi que 63 % du poids total de poissons. On peut déterminer l'état de la population de truite fario grâce à des abaques (références) qui ont été déterminés sur le Massif Central dans les années 70 par R. CUINAT. Il avait établi une classification des densités théoriques en nombre et en poids de truite en fonction de la largeur du cours d'eau :

DENSITE DE	Pondérale (en kg/ha)		ımérique (en ind./l rgeur du cours d'e	
POPULATION	Q	Etroit	Moyen	Large
	kg	< 3 m	3 -10 m	> 10 m
Très importante	300	10 000		5 000
Importante		9443.8	-4 000 -4 000	2 700
Assez importante	200	5 500		2 /00
Moyenne	- 125 - 112,16	3 200 ———	-2 200 	1 600
Assez faible	- /5	1 800	-1 200	900
Faible	- 50	1 100	- 700 	550
Très faible	30	- 600 -	- 400 	300 —

Comparaison départementale

Afin d'estimer les variations de densité de truites sur le département, nous disposons de 829 pêches électriques d'inventaire La densité départementale moyenne en truites depuis cette date est de 1352,6 truites par hectare. On retrouve ici les valeurs moyennes observées par R. CUINAT dans les années 70.

Comparaison avec les données historiques sur le bassin versant

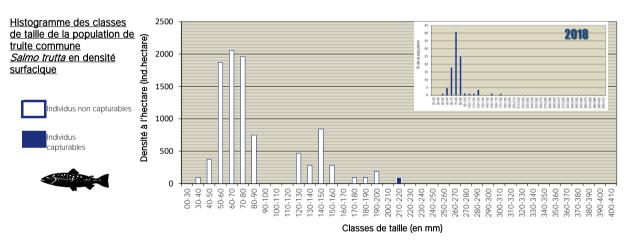
Ces données sont issues des pêches électriques réalisées sur le même contexte piscicole depuis 1959 (base de données disponible à la fédération au 01/01/2019)

Diagnostic de la population de truite commune

O Croissance et structure de la population de truite

La croissance de cette population de truite a été estimée comme étant lente ou très lente.

Lors de cette pêche électrique, 101 poissons ont été mesurés individuellement ce qui correspond à 100 % de la population capturée. L'histogramme des tailles des individus de la population de truite est donc tout à fait représentatif et il permet un diagnostic technique fiable.


Tailles	Minimu (poisson le pli		Média (50% pop. 50		Moyenne (de toute la popu		Maximu (poisson le plu:	
caracteristiques	33	mm	70	mm	86	mm	215	mm

Densité en 0⁺ de truite

La densité de 0⁺ de truite (alevins de l'année) présents sur la station est de 7106,2 /hectare. Cette densité peut être considérée comme étant très importante. La reproduction de 2020-2021 a donc plutôt très bien réussi.

Ces abaques (références) ont été déterminés sur le Massif Central dans les années 70 par R. CUINAT.

DENSITE PAR HECTARE EN	Si la croissance de la truite sur la station est :					
0 ⁺ de l'année inventoriées à l'automne	Lente ou très lente	Assez lente à assez rapide	Rapide ou très rapide			
Très importante	7 000 7106,2	_5 000 	3 500			
Importante	4 000	-2 700	2 000			
Assez importante		-1 600 	1 100			
Moyenne	2 200					
Assez faible	1 200	- 900 	600			
Faible	700	- 550 	350			
Très faible	400	- 300 	200 —			

Le diagramme des classes de tailles permet de noter une bonne structure de la population de truite au regard de la distance aux sources. En effet, on note la présence effective de quatre classes d'âges, notamment les 0+, 1+, 2+ ainsi que 3+. La population voit donc la présence d'alevins de l'année, de juvéniles ainsi que des subadultes et adultes ce qui est logique car nous avons vu que l'habitat piscicole sur cette station était particulièrement favorable aux jeunes classes d'âge de truite. L'avenir de la population de truite sur la Vienne près des sources semble assuré. La tête de bassin joue parfaitement son rôle de nurserie pour l'aval de ce ruisseau.

Etat physiologique de la population de truite

On peut évaluer l'état physiologique d'une population grâce au coefficient de condition qui permet de comparer l'embonpoint de chaque individu. Ce coefficient, noté K, indique ainsi lorsqu'il est supérieur à 1 une bonne condition physiologique du poisson et de la population. S'il est inférieur à 1, c'est l'inverse, l'état du poisson ou de la population est mauvais.

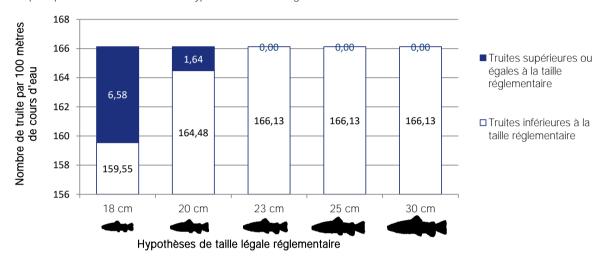
Ce coefficient permet donc d'évaluer la concurrence entre individus et entre espèce pour l'accès à la nourriture mais il permet également de révéler des conditions de stress (températures trop élevées stoppant l'alimentation etc.)

K minimum (poisson le plus maigre)	0,83	K moyen (de toute la population)	1,03	K médian (50% pop. 50% pop.)	1,03	K maximum (poisson le plus gros)	1,44
Résultats en 2018 ▶	0.83	<u> </u>	1.17	<u> </u>	1,14		1.9

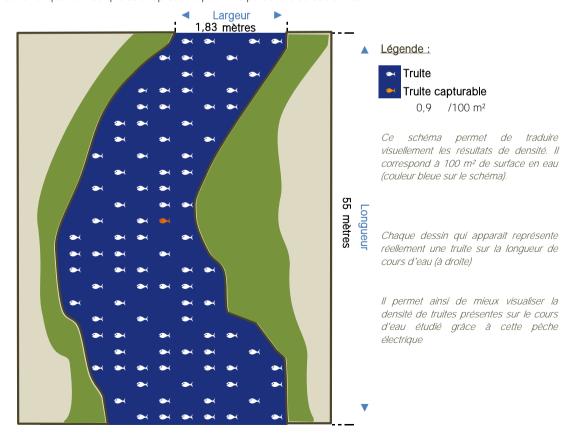
Le coefficient de condition de la population de truite est bon, ce qui tend à prouver qu'il n'existe pas de problème de nourriture sur ce cours d'eau. Le K moyen est égal au K médian ce qui révèle une bonne répartition de la disponibilité alimentaire pour chaque individu de la population. Les extrêmes confirment cette hypothèse.

Diagnostic de la population de truite commune

Gestion piscicole et nombre de truites capturables


La taille réglementaire de capture pour la truite sur ce ruisseau est de 20 centimètres (ARP). Le nombre approximatif de truites capturables sur ce cours d'eau est de 1 individus soit un total de 1,64 truites/100 mètres de cours d'eau.

Ceci correspond à environ 1,0 % de la population totale. Depuis 2000, le nombre moyen de truites capturables en Corrèze* de taille supérieure à 20 centimètres sur les cours d'eau de ce type (largeur identique) est de 1,04 truites par 100 m de cours d'eau. Sur cette station en 2021 , le nombre de truites capturables est supérieur à la moyenne du département.


* évalué sur la base de plus de 1000 pêches électriques réalisées depuis l'an 2000 (harmonisation de la taille à 20 cm)

Ceci reste cohérent avec l'habitat piscicole rencontré sur ce cours d'eau. En effet, les adultes de truite commune utilisent principalement des zones profondes pour se protéger des prédateurs et grandir. Cette station ayant beaucoup de zones profondes, il n'est pas étonnant de trouver beaucoup d'adultes âgés, donc d'adultes capturables.

Voici les principaux résultats avec d'autres hypothèses de taille réglementaire sur ce cours d'eau :

Voici schématiquement ce que cela représente pour une portion de ce cours d'eau :

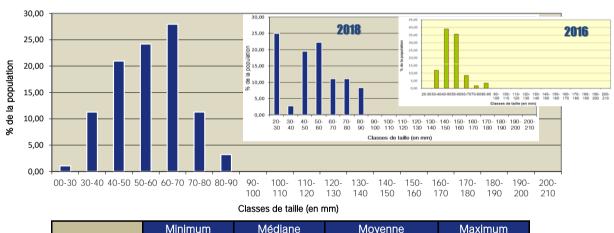
Diagnostic de la population de vairon

Statut de protection et liste rouge

Le vairon ne bénéficie d'aucun statut de protection réglementaire.

Espèce	évaluée dans les li	stes rouges des p	oissons d'eau douce d	e l'UICN
Monde	Europe	France	Nouvelle-Aquitaine	Limousin
LC	LC	DD	-	LC

LC : Préoccupation mineure (espèce pour laquelle le risque de disparition de métropole est faible) DD : Données insuffisantes (révision de la taxonomie en cours)


O Densités numériques et pondérales

La densité estimée de vairon sur ce cours d'eau est de 219,13 ind. /100 m². On considère cette densité de vairon comme très forte. La densité pondérale estimée est ici d'environ 43,94 kg/ha de cours d'eau. Celle-ci est considérée comme très forte.

Le vairon représente ici 64 % du nombre total de poissons dans ce ruisseau et 25 % du poids total de poissons dans ce cours d'eau.

O Structure de la population de vairon

Histogramme des classes de taille de la population de vairon *Phoxinus phoxinus*

Tailles	Minim ı (poisson le pl		Média (50% pop. 5		Moyen (de toute la po		Maxim (poisson le plu	
	22	mm	57	mm	56	mm	89	mm

Lors de cette pêche électrique, 186 poissons ont été mesurés individuellement ce qui correspond à environ 100 % de la population capturée. L'histogramme des tailles des individus de la population de vairon est représentatif et permet d'établir un diagnostic technique fiable.

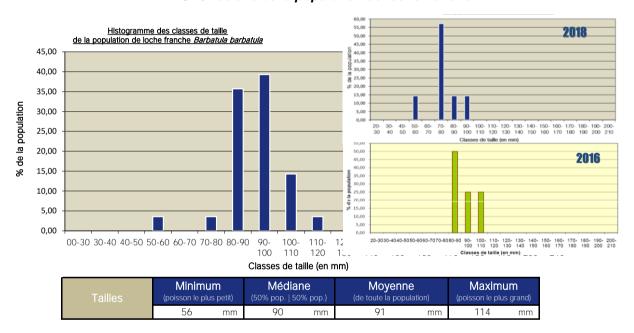
La population de vairon est extrêmement abondante et stable.

Diagnostic de la population de loche franche

Statut de protection et liste rouge

La loche franche ne bénéficie d'aucun statut de protection réglementaire.

Espèce	évaluée dans les li	stes rouges des p	oissons d'eau douce d	e l'UICN
Monde	Europe	France	Nouvelle-Aquitaine	Limousin
LC	LC	LC	-	LC


LC : Préoccupation mineure (espèce pour laquelle le risque de disparition de métropole est faible)

Densités numériques et pondérales

La densité estimée de loche franche sur ce cours d'eau est de 28,42 ind. /100 m². On considère cette densité de loche comme faible. La densité pondérale estimée est ici de 21,24 kg/ha de cours d'eau. Celle-ci est considérée comme forte.

La loche franche représente ici 8 % du nombre total de poissons dans ce ruisseau et 12 % du poids total de poissons dans ce cours d'eau.

O Structure de la population de loche franche

Lors de cette pêche électrique, **28** poissons ont été mesurés individuellement ce qui correspond à environ **100** % de la population capturée. L'histogramme des tailles des individus de la population de loche est donc représentatif et permet d'établir un diagnostic technique fiable.

La population de loche franche est abondante et en augmentation sur la station.

État sanitaire du peuplement piscicole

⊙ Codes pathologie

Méthodologie tirée de ELIE P. & GIRARD P., 2014, La santé des poissons sauvages : les codes pathologie, un outil d'évaluation, 286 p.	www.x
Informations sanitaires globales observées sur la station	
Présence de poissons malades : Non Oui Nombre de poissons examinés :	315
Espèces touchées par une pathologie : Aucune	
Présence de poissons morts : 🗸 Non 🗌 Oui Nombre de poissons morts :	0
Espèces touchées par une mortalité : Aucune	
Antécédents pathologiques connus : 🔽 Non 🔲 Oui Nombre de poissons parasités :	0
Si oui (dates et références) Nombre de poissons malades :	1

Fiche pathologie générale du peuplement piscicole observé sur la station

Espèce	Obs.	Stade	Longueur tot. (mm)	Masse (en g)	Sexe	CP	N°Photo	Observations
TRF	Р		128			ADQ1		Déformation de la caudale

Obs : P = pathologie R = Parasitisme M=Mort

<u>Légende</u>: Stade : Si anguille : A = argenté ; J = jaune ; I = intermédiaire ; C = civelle

Sexe : F = femelle ; M = mâle ; I = indéterminé

État sanitaire du peuplement piscicole

Photos des individus touchés observés

Association Santé Poissons Sawales

1

État sanitaire du peuplement piscicole

⊙ Indice pathologique global

Association Santi Poissons San du peuplement piscicole est de 0.01 . La condition sanitaire des

L'indice pathologique global du peuplement piscicole est de 0,01 . La condition sanitaire des poissons sur cette station est donc excellente.

Classes de qualité : IPG	0-0,04	0,05-0,20	0,21-0,80	0,81-1,40	1,41-8,00
Condition des poissons	Excellente	Bonne	Précaire	Dégradée	Mauvaise

• Indice parasitaire global

L'indice parasitaire global du peuplement piscicole est de 0,0

Grilles de codification

Méthodologie tirée de ELIE P. & GIRARD P., 2014, La santé des poissons sauvages : les codes pathologie, un outil d'évaluation, 286 p.

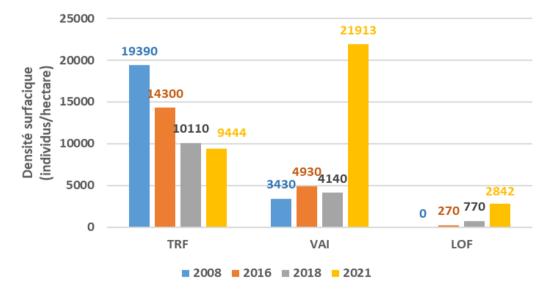
Grille de codification des anomalies	s anatomo-n	norphologiques externes et de	s
ectoparasites des	poissons vis	sibles à l'œil nu.	
Altérations anatomo-morphologiques	AA	Localisations anatomiques	Code
Absence d'organes	AO	Tout le corps	С
Bulles de gaz	BG	Tête	Т
Déformations, difformités et malformations	AD	Mâchoire	М
Erosion	ER	Bouche	G
Nécrose	NE	Barbillon	J
Hypersécrétion de mucus	HM	Narine	Ζ
Hypertrophie et hyperplasie	HY	Œil	Υ
Lésions hémorragiques et congestives	HE	Opercule (fente branchiale chez ANG)	0
Maigreur	AM	Branchie (sauf ANG, congre, LPX)	В
Plaies et lésions anciennes (cicatrices)	PL	Dos (=face pigmentée ou zénithale)	D
Tumeurs, kyste, nodules et autres grosseurs	TG	Colonne vertébrale	V
Ulcères (hémorragiques) et ulcérations	UH	Flanc	F
Etat pathologique multiforme	ZO	Ligne latérale	L
Altérations de la couleur	AC	Ecaille	Е
Opacité	OP	Abdomen (=face aveugle ou nadirale)	Α
Coloration sombre (mélanose)	CS	Orifice urogénital (anus)	U
Coloration terne ou pâle, dépigmentation	CT	Nageoire dorsale	Н
Parasitisme	PA	Nageoire pectorale	Р
Points blancs	PB	Nageoire pelvienne	R
Points noirs	PN	Nageoire anale	S
Crustacés	PC	Nageoire caudale	Q
Hirudinés (sangsues)	PH	Nageoire adipeuse (salmonidés)	J
Lamproies	PP	Pédoncule caudal	Κ
Champignons	PM	Nageoire principale (anguille)	Ν

Grille de quantification des anomalies et du parasitisme externes									
Nombre de lésions (N) et/ou abondance parasitaire (Ab)	Code		Taux (%) de recouvrement corporel (S²)	Code					
N=0 et/ou absence (Ab)	0		$S^2 = 0\%$	0					
N<3 et/ou abondance (Ab) faible	1		S ² < 5 %	1					
N=4-6 et/ou abondance (Ab) moyenne	2		S ² = 5-10 %	2					
N=7-10 et/ou abondance (Ab) forte	3		S ² = 10-20 %	3					
N ≥ 10 et/ou abondance (Ab) très forte	4		S ² ≥ 20 %	4					

Synthèse

O Bilan de l'état écologique du cours d'eau

L'état écologique de la Vienne aux sources est excellent et stable depuis 2008. Cette tête de bassin versant joue parfaitement son rôle de nurserie pour l'aval et va permettre une recolonisation plus aisée du tronçon de Vienne restauré dans l'emprise de l'ancien plan d'eau et jusqu'à Servières.


Les populations de vairon et de loche franche ont des densités très importantes en

Etat de la population de truite commune du cours d'eau

La population de truite commune est en excellent état sur cette station. La reproduction est abondante et les juvéniles et adultes présents.

Confrontation avec des données historiques

La comparaison des données disponibles depuis 2008 montre une relative stabilité avec une qualité excellente. Les variations des denstés de truite correspondent à des variations de réussite annuelle de reproduction (Si 2021 correspond à l'année où la reproduction est la plus basse, elle reste classée toutefois comme "très importante" à l'échelle du Massif Central). L'explosion des densités de vairon et aussi de loche franche dans une moindre mesure interrogent. Il est difficile pour le moment de conclure à un effet du chantier sur l'amont ou à un contexte local plus favorable lié à l'hydrologie particulière de 2021.

Perspectives et préconisations de gestion

En l'état actuel des connaissances sur ce cours d'eau, il convient de poursuivre la gestion patrimoniale

Annexe 1.1 - Données brutes poissons

Passag	Espèce	Nombre	Taille	Masse	Passag	Espèce	Nombre	Taille	Masse		Passag _P	Espèce	Nombre	Taille	Masse	Passag	Ф	Espèce	Nombre	Taille	Masse
1	TRF	1	55	1,4	1	TRF	1	70	3,3		1	VAI	1	59			1	VAI	1	68	
1	TRF TRF	1	67 61	3,4 2,4	1	TRF	1	73 80	4,2 5,4	ŀ	1	VAI	1	72 64		-	1 1	VAI	1	67 55	1
1	TRF	1	75	4,2	1	TRF	1	83	6,2	l	1	VAI	1	63			1	VAI	1	57	
1	TRF TRF	1	62 135	2,5 26,2	1	TRF TRF	1	188 82	65,8 5	ŀ	1	VAI	1	32 58		-	1 1	VAI	1	46 43	ı
1	TRF	1	57	2,1	1	TRF	1	69	3,4	ŀ	1	VAI	1	59		_	1	VAI	1	56	
1	TRF	1	136	25,4	1	TRF	1	120	18,6	ļ	1	VAI	1	60		_	1 1	VAI	1	22	
1	TRF TRF	1	133 64	23,7	1	TRF TRF	1	51 56	1,4 1,8	ŀ	1	VAI	1	40 79		_	1	LOF LOF	1	100	
1	TRF	1	56	1,8	1	TRF	1	83	5,9	ļ	1	VAI	1	58		_	1	LOF	1	88	
1	TRF	1	64 215	2,6 105,3	1	TRF	1	70 67	3,6 3	ŀ	1	VAI	1	45 68		_	1 1	LOF LOF	1	90 87	ı
1	TRF	1	147	33,3	1	TRF	1	70	3,3	ľ	1	VAI	1	66			_	LOF	1	90	
1	TRF TRF	1	144 55	31 2	1	TRF TRF	1	57 57	2,1	ŀ	1	VAI	1	45 60		_	1 1	LOF LOF	1	105 87	
1	TRF	1	71	3,5	1	TRF	1	64	2,4	ŀ	1	VAI	1	75		_	1	LOF	1	96	
1	TRF	1	141	27,9	1	TRF	1	52	1,8		1	VAI	1	80			_	LOF	1	86	149
1	TRF TRF	1	157 128	41,1 21,4	1	TRF	1	61 61	2,3	ŀ	1	VAI	1	67 50		H	1 1	LOF LOF	1	109 89	
1	TRF	1	77	4,3	1	VAI	1	55		ļ	1	VAI	1	66		_	1	LOF	1	93	
1	TRF TRF	1	70 70	3,6 3,5	1	VAI	1	54 60		ŀ	1	VAI	1	60 71		_	1 1	LOF LOF	1	88 75	
1	TRF	1	57	2,1	1	VAI	1	55		t	1	VAI	1	44			_	LOF	1	95	
1	TRF	1	70	3,1	1	VAI	1	62		ļ	1	VAI	1	65		_	1 1	LOF	1	90	
1	TRF	1	76 61	4,5 2,5	1	VAI	1	71 74		ŀ	1	VAI	1	53 67		_	1	LOF LOF	1	83 92	
1	TRF	1	54	1,6	1	VAI	1	66		ļ	1	VAI	1	61			1	LOF	1	56	
1	TRF TRF	1	60 47	2,3 1,5	1	VAI	1	56 56		ŀ	1	VAI	1	62 54			+				
1	TRF	1	121	18,2	1	VAI	1	35		ľ	1	VAI	1	68							
1	TRF TRF	1	146 192	34,8 74,3	1	VAI	1	54 65		ŀ	1	VAI	1	38 63			_				
1	TRF	1	148	31,2	1	VAI	1	70		ŀ	1	VAI	1	59	270		_				
1	TRF	1	87	6,9	1	VAI	1	55			1	VAI	1	59	279						
1	TRF	1	77 67	4,4 2,9	1	VAI	1	74 66		ŀ	1	VAI	1	49 67			+				
1	TRF	1	66	2,9	1	VAI	1	65		Į	1	VAI	1	46							
1	TRF TRF	1	80 59	5 1,9	1	VAI	1	57 62		ŀ	1	VAI	1	71 37			4				
1	TRF	1	63	2,6	1	VAI	1	47		ŀ	1	VAI	1	66							
1	TRF	1	57	2	1	VAI	1	57		ļ	1	VAI	1	55							
1	TRF TRF	1	143 129	30,6 22,9	1	VAI	1	60 85		ŀ	1	VAI	1	74 48			_				
1	TRF	1	148	32,6	1	VAI	1	85		ļ	1	VAI	1	47							
1	TRF TRF	1	158 194	39,5 83,5	1	VAI	1	58 47		ŀ	1	VAI	1	43 59			+				
1	TRF	1	143	31,8	1	VAI	1	44		ľ	1	VAI	1	45							
1	TRF TRF	1	72 80	3,9 4,9	1	VAI	1	67 55		ŀ	1	VAI	1	45 64			_				
1	TRF	1	62	2,5	1	VAI	1	76		ŀ	1	VAI	1	65							
1	TRF	1	77	4,4	1	VAI	1	44		F	1	VAI	1	71							
1	TRF TRF	1	63 80	2,5 5,2	1	VAI	1	75 60		ŀ	1	VAI	1	52 55			+				
1	TRF	1	69	3,2	1	VAI	1	56		ļ	1	VAI	1	43							
1	TRF TRF	1	55 64	1,6 2,6	1	VAI	1	40 76		ŀ	1	VAI	1	70 51			+				
1	TRF	1	70	3,5	1	VAI	1	54		t	1	VAI	1	59							
1	TRF	1	69	3,1	1	VAI	1	63		ſ	1	VAI	1	65			-				
1	TRF TRF	1	70 50	3,3 1,5	1	VAI	1	80 58		ŀ	1	VAI	1	66 74							
1	TRF	1	68	3,4	1	VAI	1	58		ļ	1	VAI	1	67			1				
1	TRF TRF	1	68 49	3,3 1.2	1	VAI	1	42 57		-	1	VAI	1	56 70			-				
1	TRF	1	143	30,2	1	VAI	1	57		Į	1	VAI	1	67							
1	TRF TRF	1	152 177	40 62,5	1	VAI	1	57 53		ŀ	1	VAI VAI	1	47 45							
1	TRF	1	122	18,4	1	VAI	1	67		ŀ	1	VAI	1	75							

Annexe 1.2 - Données brutes poissons

Passage	Espèce	Nombre	Taille	Masse	Passage	Espèce	Nombre	Taille	Masse	Passage	Espèce	Nombre	Taille	Masse		⊘ Passage	Espèce	Nombre	Taille	Masse
		_								2	TRF	1	79	5,1	F	2	VAI	1	38	
										2	TRF	1	79	4,9		2	VAI	1	41	
										2	TRF TRF	1	59 56	2,1 1,8	-	2	VAI	1	34 41	
										2	TRF	1	64	2,9		2	VAI	1	42	
										2	TRF	1	33	0,3		2	VAI	1	42	
										2	TRF	1	47	1,2		2	VAI	1	38	
										2	TRF TRF	1	53 70	1,5 3,3		2	VAI	1	34 33	
										2	TRF	1	50	1,2		2	VAI	1	51	
										2	TRF	1	78	4,6		2	VAI	1	60	
										2	TRF TRF	1	56 73	1,7 4,1		2	VAI	1	49 30	
										2	TRF	1	48	1,2		2	VAI	1	36	
										2	LOF	1	94			2	VAI	1	50	
										2	LOF LOF	1	82 114			2	VAI	1	51 48	
										2	LOF	1	81	(0.0		2	VAI	1	30	
										2	LOF	1	86	60,3						
										2	LOF	1	94							
										2	LOF LOF	1	99 91							
										2	VAI	1	76							
										2	VAI	1	57							
										2	VAI	1	60 64							
										2	VAI	1	73							
										2	VAI	1	45							
										2	VAI	1	31 56		_					
										2	VAI	1	68							
										2	VAI	1	69							
										2	VAI	1	44 52							
										2	VAI	1	36							
										2	VAI	1	61							
										2	VAI	1	35							
										2	VAI	1	61 86							
										2	VAI	1	71							
										2	VAI	1	43							
										2	VΑI	1	65 40							
										2	VAI	1	69	94						
										2	VAI	1	43							
										2	VAI	1	42 64			_				
										2	VAI	1	45							
										2	VAI	1	89							
										2	VAI	1	62							
										2	VAI	1	60 64							
										2	VAI	1	40							
										2	VAI	1	36							
										2	VAI	1	36 37							
										2	VAI	1	58							
										2	VAI	1	62							
										2	VAI	1	41 47							
										2	VAI	1	47							
										2	VAI	1	38							
										2	VAI	1	30 29							
										2	VAI	1	37							
											• / 11	<u> </u>	٥,							

Annexe 2 - Données de l'habitat sur la station de pêche

Fa	ıclès
Lo	Lotique
Le	Lentique
Р	Profond

	Vitesse de courant							
1	1 < 5 cm.s-1							
2	5 - 25 cm.s-1							
3	25 - 75 cm.s-1							
4	> 75 cm.s-1							

	Végétatlon aquatlque						
В	Bryophytes	1	<20%				
Hff	Hydrophytes à feuille flottante	2	20-40				
Hi	Hydrophyte immergé	3	40-60				
He	Hélophyte	4	60-80				
Α	Autre	5	>80%				

Les largeurs sont mesurées au télémètre laser, les longueurs au décamètre et/ou au télémètre et les profondeurs à la mire.

	Granulométi	rle						
L	Vase/Limon	<0,005 mm						
S	Sable 0,05-2 mm							
G	Gravier	2-16 mm						
С	Cailloux	16-60 mm						
Р	Pierre	60-250 mm						
В	Blocs	250-1000 mm						
Rm	Roche mère ou béton							

	Colmatag	е	Ombrage
0	Aucun	0%	0%
1	Très faible	<20 %	<20 %
2	Faible	20-40	20-40
3	Moyen	40-60	40-60
4	Fort	60-80	60-80
5	Très fort	>80 %	> 80 %

	Abris et caches
Bsc	Berges sous cavées
Bm	Bois mort
R	Racine
E	Encombre
G	Granulométrie
Α	Autres

	Nature des berges
N	Naturelle
E	Enrochée
В	Bétonnée
Р	Pont

La diversité de l'habitat est évaluée par l'opérateur avec une note allant de 0 à 5

Faciès	Longueur cumulée (en m)	Largeur lit mouillé	Profondeur	Vitesse moyenne	Granu tri		a TRF ı m²)	Colmatage			atior tique	iris	Cache	Diversité des habitats	Ombrage	เหลเนเ	e harna
Fac	Long cum (en	(en m)	(en cm)	Vit	Dom	Acce	SFR à TR (en m²)	Colm	Type	%	Туре	% Ak	Ca	Dive des ha	Omb	RD	RG
Lo	3,4	1,83 (\$ 0 2,1,65 (\$ 0 3,0 (7)0 4,0 (8)0	① 18 ⑤ 16 ② 17 ⑥ 18 ③ 14 ⑦ 16 ④ 16 ⑧ 15	2	G	S	0,5 1	0	B Hff Hi	33	He A		Ssc A	4	0	N	N
Le	5,85	① 2,18 ⑤ 0 ② 0 ⑥ 0 ③ 0 ⑦ 0 ④ 0 ⑧ 0	① 21 ⑤ 11 ② 23 ⑥ 26 ③ 25 ⑦ 21 ④ 21 ⑧ 16	2	G	S	1	0	B Hff Hi	40	He A		Ssc A	5	0	N	Ν
Р	9,3	① 2,19 ⑤ 0 ② 0 ⑥ 0 ③ 0 ⑦ 0 ④ 0 ⑧ 0	① 29 ⑤ 27 ② 34 ⑥ 23 ③ 33 ⑦ 0 ④ 27 ⑧ 0	1	G	S	1,5	0	B Hff Hi	30	He A		Ssc A	4	0	N	Ν
Lo	16,5	① 1,3 ⑤ 0 ② 1,35 ⑥ 0 ③ 0 ⑦ 0 ④ 0 ⑧ 0	① 25 ⑤ 19 ② 21 ⑥ 21 ③ 19 ⑦ 18 ④ 23 ⑧ 20	2	G	G	0,5	0	B Hff Hi		He A		Ssc A	5	0	N	N
Le	19,3	① 1,8 ⑤ 0 ② 0 ⑥ 0 ③ 0 ⑦ 0 ④ 0 ⑧ 0	① 30 ⑤ 26 ② 30 ⑥ 27 ③ 23 ⑦ 30 ④ 29 ⑧ 22	1	G	S		0	B Hff Hi	95	He A		Ssc E A	4	0	N	Ν
Р	26,76	① 1,98 ⑤ 0 ② 1,66 ⑥ 0 ③ 0 ⑦ 0 ④ 0 ⑧ 0	① 40 ⑤ 35 ② 35 ⑥ 31 ③ 37 ⑦ 36 ④ 32 ⑧ 48	1	G	S		0	B Hff Hi	45	He A		Ssc A	5	0	N	Ν
Р	33,31	1 2,6 5 0 2 2,39 6 0 3 0 7 0 4 0 8 0	① 37 ⑤ 45 ② 46 ⑥ 45 ③ 46 ⑦ 34 ④ 45 ⑧ 35	1	С	G		0	B Hff Hi	2	He A		Ssc A	5	0	N	N
Le	36,8	① 1,7 ⑤ 0 ② 0 ⑥ 0 ③ 0 ⑦ 0 ④ 0 ⑧ 0	① 21 ⑤ 28 ② 23 ⑥ 27 ③ 26 ⑦ 24 ④ 34 ⑧ 24	2	G	G	0,5	0	B Hff Hi	95	He A		Ssc A	5	0	N	N
Le	45,25	① 1,7 ⑤ 0 ② 1,3 ⑥ 0 ③ 0 ⑦ 0 ④ 0 ⑧ 0	① 37 ⑤ 40 ② 35 ⑥ 34 ③ 30 ⑦ 31 ④ 29 ⑧ 37	1	С	G	1	0	B Hff Hi		He A		Ssc A	5	0	N	N

Р	52,3	 1,8 1,8 0 0 	(5)(6)(7)(8)	0 0 0 0	① ② ③ ④	41 39 32 37	5678	42 38 43 42	2	С	G	0,2	0	B Hff Hi	 He A		Bsc A	5	0	N	Ν
Le	55	 1,88 0 0 0 	(5) (6) (7) (8)	0 0	① ② ③ ④	34 32 26 32	5678	0 0 0	1	С	G	0,2	0	B Hff Hi	 He A		Bsc A	4	0	Ν	Ν
Lo	62	① 0,98 ② 1,7 ③ 0 ④ 0	(5)(6)(7)(8)	0 0 0	① ② ③ ④	26 30 28 29	5678	28 26 25 0	2	G	G	0,2 0,5	0	Hff	 He A	-	Bsc G	5	0	Ν	Ν

Annexe 3 - Codes 3 lettres des espèces et liste rouge

Liste rouge régionale des poissons du Limousin validée en CSRPN en mars 2019

	Nom commun Ablette	Code ABL	Nom latin de l'espèce Alburnus alburnus	Statut LC	
ļ	Able de Heckel	ABL ABH	Leucaspius delineatus	NA NA	
	Alose feinte	ALF	Alosa fallax	NA NA	
	Grande alose	ALA	Alosa alosa	CR*	
	Anguille européenne	ANG	Anguilla anguilla	CR	
	Aspe	ASP	Aspius aspius	NA	
ļ	Barbeau fluviatile	BAF	Barbus barbus	LC	
	Barbeau méridional	BAM	Barbus meridionalis	NA	
ļ	Black bass	BBG	Micropterus salmoïdes	NA NA	
ļ	Brème bordelière	BRB	Blicca bjoerkna	NA NA	
	Brème commune	BRE	Abramis brama	DD	
	Brèmes indéterminées	BRX		NA	
	Blageon	BLN	Telestes souffia	NA NA	
ļ	Bouvière	BOU	Rhodeus amarus	DD	
ļ	Brochet		Knoueus amaius Esox lucius	VU	
		BRO		NA NA	
	Carassin doré	CAA	Carassius auratus	NA NA	
	Carpe argentée	CAR	Hypophthalmichthys molitrix	NA NA	
	Carassin commun	CAS	Carassius carassius		
	Carassins indéterminés	CAX	Carassius sp.	NA	
	Carpe	CCO	Cyprinus carpio	DD	
	Chabot fluviatile	CHA	Courts perifretum	LC	
	Chevaine	CHE	Squalius cephalus	LC	
	Carpe amour	CTI	Ctenopharyngodon idella	NA	
	Cyprinidés indéterminés	CYP	-	NA	
	Epinoche	EPI	Gasterosteus gymnurus	NA	
	Epinochette	EPT	Pungitus laevis	NA	
	Gambusie	GAM	Gambusia affinis	NA	
	Gardon	GAR	Rutilus rutilus	LC	
	Goujon	GOX	Gobio spp.	LC	
	Gremille	GRE	Gymnocephalus cernuus	NA	
	Hotu	HOT	Chondrostoma nasus	NA	
	lde Mélanote	IDE	Leuciscus idus	NA	
	Espèce indéterminée	IND	-	NA	
	Loche franche	LOF	Barbatula barbatula	LC	
	Lote	LOT	Lota lota	NA	
	Lamproie de Planer	LPP	Lampetra planeri	LC	
	Lamproie marine	LPM	Petromyzon marinus	CR	
	Lamproies indéterminées	LPX	-	NA	
	Omble de fontaine	SDF	Salvelinus fontinalis	NA	
.	Ombre commun	OBR	Thymallus thymallus	CR	< Uni sur le
.	Poisson chat	PCH	Ameirus melas	NA	Vienn
	Perche commune	PER	Perca fluviatilis	LC	sinon
	Perche soleil	PES	Lepomis gibbosus	NA	
	Pseudorasbora	PSR	Pseudorasbora parva	NA	
	Rotengle	ROT	Scardinius erythrophthalmus	LC	
	Sandre	SAN	Sander lucioperca	NA	
ļ	Saumon atlantique	SAT	Salmo salar	CR	
	Silure	SIL	Silurus glanis	NA	Ī
	Spirlin	SPI	Alburnoides bipunctatus	LC	
Ī	Tanche	TAN	Tinca tinca	DD	
Ī	Toxostome	TOX	Parachondrostoma toxostoma	CR	ı
	Truite arc-en-ciel	TAC	Oncorhynchus mykiss	NA	
·····	Truite commune	TRF	Salmo trutta	NT	
·····	Vairon	VAI	Phoxinus spp.	LC	
ļ	Vairons indéterminés	PHX	-	NA	
	Vandoise	VAN	Leuciscus leuciscus	LC	
	Vandoise rostrée	VAR	Leuciscus burdigalensis	VU	

CR* : en danger critique, peut-être disparue - CR : en danger critique - EN : en danger - VU : vulnérable - NT : Quasi-menacée - LC : préoccupation mineure - DD : données insuffisantes - NA : pas d'analyse

		irisuirisarites	- NA : pas u analyse
SES	Ecrevisse pieds blancs	APP	Austropotamobius pallipes
	Ecrevisse pattes rouges	ASA	Astacus astacus
	Ecrevisse à pattes grêles	ASL	Astacus leptodactylus
	Ecrevisse de Californie	PFL	Pacifastacus leniusculus
2	Ecrevisse américaine	OCL	Orconectes limosus
111	Ecrevisse de Louisiane	PCC	Procambarus clarkii
	Ecrevisses indéterminées	ECR	Astacidae

Cette opération a été réalisée grâce à la participation de :

Cette opération a été réalisée grâce au soutien financier de :

Pour plus de renseignements :